

November 18-19

Venice

WHOLE EXOME SEQUENCING OF PATIENTS WITH ADULT ONSET EVANS SYNDROME: A COHORT OF 120 PATIENTS

E. Crickx ^{1,2}, J. Fadlallah³, M. Cheminant⁴, J. Rosain⁵, J. Dion⁶, M. Malphettes³, D. Boutboul⁷, C. Gourguechon⁸, M. Ebbo⁹, A.M. Ronchetti¹⁰, T. Moulinet¹¹, D. Gobert¹², J. Hadjadj¹², J. Graveleau¹³, M.C. Stolzenberg¹, B. Godeau², L. Galicier³, J.F. Viallard¹⁴, S. Audia¹⁵, F. Suarez⁴, E. Oksenhendler³, C. Fieschi³, O. Hermine⁴, M. Michel², M. Mahevas², F. Rieux-Laucat¹ and the French Evans study group

1 Imagine Institute, « Immunogenetics of Pediatric Autoimmune Diseases », INSERM U1163, Paris; 2 Internal medicine Department, Henri Mondor Hospital, AP-HP, Créteil, France;

3 Clinical immunology department, Saint Louis hospital, AP-HP; 4 Hematology department, Necker Hospital, APHP; 5 Centre d'étude des déficits immunitaires (CEDI), Necker Hospital, APHP; 6 Toulouse University Hospital; 7 Hematology department, Cochin Hospital, APHP; 8 Hematology department, Amiens University Hospital; 9 Internal medicine department, Timone University Hospital, Aix-Marseille Université; 10 Hematology department, Sud Francilien hospital; 11 Internal medicine department, Nancy University Hospital; 12 Internal medicine department, Saint Antoine Hospital, APHP; 13 Internal medicine department, Saint Nazaire Hospital; 14 Internal medicine department, Haut-Leveque Hospital; 15 Internal medicine department, Dijon University Hospital;

Cities :1.2.3.4.5.7.12. Paris (F), 6. Toulouse (F), 8. Amiens (F), 9. Marseille (F), 10. Corbeil Essonne(F), 11. Nancy (F), 13. Saint Nazaire (F), 14. Pessac, (F), 15. Dijon (F)

Disclosures of Crickx Etienne (unrelated to this presentation)

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis						EC	
UCB						EC	
Sanofi							EC
Amgen							EC

Introduction

- Loss of tolerance toward several self-antigens suggests an underlying genetic predisposition
- In children with Evans syndrome (ES), 30-40% have an underlying monogenic disease

Hadjadj et al., Blood 2019

• In adult, next generation sequencing is not routinelly performed in ES, as diagnosis yield is considered to be low

Venice

November 18-19

Fattizzo et al., Blood Adv 2021 Jiang et al., Blood Advance 2023

• Identify genetic variants responsible for adult onset Evans syndrome

Venice

November 18-19

- Study their association with clinical or biological features
- Perform functional studies of **new genetic variants**
- Guide therapeutic strategy with genetic findings

Patients and methods

- Inclusion criteria : Adult onset (≥18 years) Evans syndrome
 - Defined as at least 2 autoimmune cytopenia among:
 - Immune thrombocytopenia (ITP), warm autoimmune hemolytic anemia (wAIHA), autoimmune neutropenia (AIN)
 - Diagnosed according to international guidelines^{1,2}

• Exclusion criteria :

- Systemic lupus (according to Systemic Lupus International Collaborating Clinics criteria³)
- Indolent B cell malignancies at Evans syndrome onset
- Other causes of cytopenia (drugs)

¹ Provan D et al., Blood Adv 2019
² Jäger U et al., Blood Rev 2020
³ Petri M et al., Arthritis Rheum 2012

Patients and methods

- Patients identified in France in the network of the national reference center for adult autoimmune cytopenia (CERECAI) from November 2021 to June 2023
- Clinical and biological data were retrospectively collected using a standardized form
- Whole-exome sequencing after written and informed consent was obtained (except for patients with genetic diagnosis already available)
- Gene variants already published and/or with *in vitro* confirmed consequences were considered as genetic diagnoses. Clinical interpretation of variants was performed according to the ACMG guidelines¹
 ¹ Richards S et al., Genet Med 2015

Flow Chart of study

Flow Chart of study

	All patient (N=120)
Female	44 (37)
Age at Evans syndrome diagnosis (median, range)	33 [18 - 80]
Age at first cytopenia (median, range)	30 (1 - 80)

November 18-19, 2024

Venice

	All patient (N=120)
Age < 18 at first cytopenia	19 (16)
Immunopathologic manifestations in first-degree relatives	24 (20)
Severe and/or recurrent infections	31 (26)
Humoral immune deficiency	30 (25)
CVID-like	20 (17)
IgA deficiency	3 (3)
IgG subclass deficiency	2 (2)
Secondary humoral immune deficiency	5 (4)
Organomegaly	64 (53)
Adenomegaly	48 (40)
Splenomegaly	37 (31)
Hepatomegaly	12 (10)
Tissue lymphocyte infiltration	7 (6)
Malignancies	13 (11)
Associated immunopathologic manifestations	40 (33)
Antinuclear antibody (titer ≥ 1/160)	37 (31)

	All patient (N=120)
Age < 18 at first cytopenia	19 (16)
Immunopathologic manifestations in first-degree relatives	24 (20)
Severe and/or recurrent infections	31 (26)
Humoral immune deficiency	30 (25)
CVID-like	20 (17)
IgA deficiency	3 (3)
IgG subclass deficiency	2 (2)
Secondary humoral immune deficiency	5 (4)
Organomegaly	64 (53)
Adenomegaly	48 (40)
Splenomegaly	37 (31)
Hepatomegaly	12 (10)
Tissue lymphocyte infiltration	7 (6)
Malignancies	13 (11)
Associated immunopathologic manifestations	40 (33)
Antinuclear antibody (titer ≥ 1/160)	37 (31)

	All patient (N=120)
Age < 18 at first cytopenia	19 (16)
Immunopathologic manifestations in first-degree relatives	24 (20)
Severe and/or recurrent infections	31 (26)
Humoral immune deficiency	30 (25)
CVID-like	20 (17)
IgA deficiency	3 (3)
IgG subclass deficiency	2 (2)
Secondary humoral immune deficiency	5 (4)
Organomegaly	64 (53)
Adenomegaly	48 (40)
Splenomegaly	37 (31)
Hepatomegaly	12 (10)
Tissue lymphocyte infiltration	7 (6)
Malignancies	13 (11)
Associated immunopathologic manifestations	40 (33)
Antinuclear antibody (titer ≥ 1/160)	37 (31)

	All patient (N=120)
Age < 18 at first cytopenia	19 (16)
Immunopathologic manifestations in first-degree relatives	24 (20)
Severe and/or recurrent infections	31 (26)
Humoral immune deficiency	30 (25)
CVID-like	20 (17)
IgA deficiency	3 (3)
IgG subclass deficiency	2 (2)
Secondary humoral immune deficiency	5 (4)
Organomegaly	64 (53)
Adenomegaly	48 (40)
Splenomegaly	37 (31)
Hepatomegaly	12 (10)
Tissue lymphocyte infiltration	7 (6)
Malignancies	13 (11)
Associated immunopathologic manifestations	40 (33)
Antinuclear antibody (titer ≥ 1/160)	37 (31)

	All patient (N=120)
Age < 18 at first cytopenia	19 (16)
Immunopathologic manifestations in first-degree relatives	24 (20)
Severe and/or recurrent infections	31 (26)
Humoral immune deficiency	30 (25)
CVID-like	20 (17)
IgA deficiency	3 (3)
IgG subclass deficiency	2 (2)
Secondary humoral immune deficiency	5 (4)
Organomegaly	64 (53)
Adenomegaly	48 (40)
Splenomegaly	37 (31)
Hepatomegaly	12 (10)
Tissue lymphocyte infiltration	7 (6)
Malignancies	13 (11)
Associated immunopathologic manifestations	40 (33)
Antinuclear antibody (titer ≥ 1/160)	37 (31)

	All patient (N=120)
Age < 18 at first cytopenia	19 (16)
Immunopathologic manifestations in first-degree relatives	24 (20)
Severe and/or recurrent infections	31 (26)
Humoral immune deficiency	30 (25)
CVID-like	20 (17)
IgA deficiency	3 (3)
IgG subclass deficiency	2 (2)
Secondary humoral immune deficiency	5 (4)
Organomegaly	64 (53)
Adenomegaly	48 (40)
Splenomegaly	37 (31)
Hepatomegaly	12 (10)
Tissue lymphocyte infiltration	7 (6)
Malignancies	13 (11)
Associated immunopathologic manifestations	40 (33)
Antinuclear antibody (titer ≥ 1/160)	37 (31)

Genetic testing

November 18-19, 2024

Venice

*frequency <1/10.000 (gnomAD) and CADD score ≥ 20

Genetic testing

Venice

November 18-19, 2024

*frequency <1/10.000 (gnomAD) and CADD score \geq 20

Genetic testing

120 patients included 3 with prior genetic diagnosis at inclusion SLC29A3 HMZ variant CYBB HTZ variant TNFAIP3 HTZ variant **118 patients underwent WES** 14,497,054 total WES variants 567 Rare or Novel variants* in 810 selected genes 12 pathogenic variants in 12 patients Other variants ES related variants (N=12) (N=2) Mono-allelic: Mono-allelic: NFKB1 (N=3), CTLA4 (N=2), STAT3 (N=1), DDX41 (N=1), PTPN2 (N=1), CYBB (N=1), TNFAIP3 (N=1) *MYH9* (N=1) **Bi-allelic: Bi-allelic:** GBA (N=1) PIK3CG (N=1) SLC29A3 (N=1)

*frequency <1/10.000 (gnomAD) and CADD score \geq 20

Clinical and biological features of patients with or without genetic diagnosis

LEuropean Research Consortium on ITP Meeting INNOVATIONS IN IMMUNE THROMBOCYTOPENIA

Venice November 18-19, 2024

Hierarchical clustering of patients (multiple correspondence analysis)

LEuropean Research Consortium on ITP Meeting INNOVATIONS IN IMMUNE THROMBOCYTOPENIA

Venice November 18-19, 2024

Discussion

- Large cohort of adult patients with ES and genetic testing, with genetic diagnosis in 10%
- Led to targeted therapy in some patients¹, screening of relatives (NFKB1 families), and new variants description (e.g. PTPN2²)
- Limitations include « solo » exome (can miss genetic diagnoses), and assessment of rare variants with high impact only
- Patients with genetic diagnosis were younger and had more immune manifestations in first-degree relatives
- Overall these results suggest that genetic testing should be considered in every adult patient diagnosed with ES

¹ Fischer et al., JACI 2023 ²Jeanpierre et al., JEM 2024

November 18-19

Venice

LEUROPEAN Research Consortium on ITP Meeting INNOVATIONS IN IMMUNE THROMBOCYTOPENIA

November 18-19, 2024

Venice

Created using biorender

FRL team « *Immunogenetics of Pediatric Autoimmune Diseases* » :

- Frédéric Rieux-Laucat
- Aude Magerus
- Bénédicte Neven
- Marie-Claude Stolzenberg
- Victor Michel
- Malak Fakih
- Duong Ho-Nhat

CEDI Necker

- Capucine Picard
- Jérémie Rosain

Patients and their families

CERECAI network – French Evans study group

- Matthieu Mahévas, Bertrand Godeau, Marc Michel, Laetitia Languille (Créteil)
- Lionel Galicier, Claire Fieschi, Jehane Fadlallah, Marion Malphettes, David Boutboul, Laurence Gérard, Eric Oksenhendler (St Louis, Paris)
- Olivier Hermine, Morgane Cheminant, Felipe Suarez (Necker, Paris)
- Jérémie Dion, Thibault Comont, Guillaume Moulis (Toulouse)
- Clement Gourguechon (Amiens)
- Mikael Ebbo, Benoit Fauger (Marseille)
- Anne Marie Ronchetti (Corbeil)
- Thomas Moulinet (Nancy)
- Delphine Gobert, Jerome Hadjadj (Saint Antoine, Paris)
- Julie Graveleau (Nantes)
- Jean-Francois Viallard (Bordeaux)
- Sylvain Audia (Dijon)
- Marie Goussef (Vannes)
- Louis Terriou (Lille)
- Antoine Dossier (Bichat, Paris)
- Adrien Bigot (Tours)

atiques	Inserm

thém

nstitut national le la santé et de la recherche médicale

LEuropean Research Consortium on ITP Meeting INNOVATIONS IN IMMUNE THROMBOCYTOPENIA

Venice November 18-19, 2024